Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neurotrauma ; 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38517091

RESUMEN

This study utilized the Noldus PhenoTyper Home Cage Monitoring system (HCM) to assess the behavioral and cognitive changes of experimental closed-head mild traumatic brain injury (mTBI). Seventy-nine adult male Institute of Cancer Research (ICR) mice were subjected to either a sham procedure or closed-head mTBI using the weight-drop model. Seven days post-injury, separate cohorts of mice underwent either a non-cognitive or a cognitive home cage assessment, a treadmill fatigue test, or the Open Field Test. mTBI significantly influenced habituation behavior and circadian wheel-running activity. Notably, mTBI mice exhibited an increased frequency of visits to the running wheel, but each visit was shorter than those of controls. No significant differences between the groups in discrimination or reversal learning performance were observed. However, during the reversal learning stage, mTBI mice performed similarly to their initial discrimination learning levels, suggesting an abnormally faster rate of reversal learning. Home cage monitoring is a valuable tool for studying the subtle effects of mTBI, complementing traditional assays. The automated evaluation of habituation to novel stimuli (e.g., novel environment) could serve as a potentially sensitive tool for assessing mTBI-associated behavioral deficits.

2.
Front Behav Neurosci ; 17: 1281274, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38152309

RESUMEN

Introduction: The first cells affected by UVB exposure are epidermal keratinocytes, and p53, the genome guardian, is activated in these cells when skin is exposed to UVB. UVB exposure induces appetite, but it remains unclear whether p53 in epidermal keratinocytes plays a role in this appetite stimulation. Results: Here we found that food intake was increased following chronic daily UVB exposure in a manner that depends on p53 expression in epidermal keratinocytes. p53 conditional knockout in epidermal keratinocytes reduced food intake in mice upon UVB exposure. Methods: To investigate the effects of p53 activation following UVB exposure, mice behavior was assessed using the staircase, open-field, elevated-plus maze, and conditioned-place preference tests. In addition to effects on appetite, loss of p53 resulted in anxiety-related behaviors with no effect on activity level. Discussion: Since skin p53 induces production of ß-endorphin, our data suggest that UVB-mediated activation of p53 results in an increase in ß-endorphin levels which in turn influences appetite. Our study positions UVB as a central environmental factor in systemic behavior and has implications for the treatment of eating and anxiety-related disorders.

3.
Front Behav Neurosci ; 17: 1147784, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37351154

RESUMEN

Automated gait assessment tests are used in studies of disorders characterized by gait impairment. CatWalk XT is one of the first commercially available automated systems for analyzing the gait of rodents and is currently the most used system in peer-reviewed publications. This automated gait analysis system can generate a large number of gait parameters. However, this creates a new challenge in selecting relevant parameters that describe the changes within a particular disease model. Here, for the first time, we performed a multi-disorder review on published CatWalk XT data. We identify commonly reported CatWalk XT gait parameters derived from 91 peer-reviewed experimental studies in mice, covering six disorders of the central nervous system (CNS) and peripheral nervous system (PNS). The disorders modeled in mice were traumatic brain injury (TBI), stroke, sciatic nerve injury (SNI), spinal cord injury (SCI), Parkinson's disease (PD), and ataxia. Our review consisted of parameter selection, clustering, categorization, statistical evaluation, and data visualization. It suggests that certain gait parameters serve as potential indicators of gait dysfunction across multiple disease models, while others are specific to particular models. The findings also suggest that the more site-specific the injury is, the fewer parameters are reported to characterize its gait abnormalities. This study strives to present a clearly organized picture of gait parameters used in each one of the different mouse models, potentially helping novel CatWalk XT users to apply this information to similar or related mouse models they are working on.

4.
Front Behav Neurosci ; 17: 1140724, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37035620

RESUMEN

Traumatic brain injury (TBI) is a primary global health concern and one of the most common causes of neurological impairments in people under 50. Mild TBI (mTBI) accounts for the majority of TBI cases. Anxiety is the most common complaint after mTBI in humans. This study aims to evaluate behavioral tests designed to assess anxiety-like phenotypes in a mice model of mTBI. ICR mice underwent mTBI using the weight-drop model. Seven days post-injury, mice were subjected to one of five different behavioral tests: Elevated Plus Maze (EPM), Open Field apparatus (OF), Marble Burying test (MBT), Light Dark Box (LDB), and the Light Spot test within the PhenoTyper home cage (LS). In the EPM and OF tests, there were no significant differences between the groups. During the 30-min test period of the MBT, mTBI mice buried significantly more marbles than control mice. In the LDB, mTBI mice spent significantly less time on the far side of the arena than control mice. In addition, the time it took for mTBI mice to get to the far side of the arena was significantly longer compared to controls. Results of LS show significant within-group mean differences for total distance traveled for mTBI mice but not for the control. Furthermore, injured mice moved significantly more than control mice. According to the results, the anxiety traits exhibited by mTBI mice depend upon the time of exposure to the aversive stimulus, the apparatus, and the properties of the stressors used. Therefore, the characterization of anxiety-like behavior in mTBI mice is more complicated than was initially suggested. Based on our findings, we recommend incorporating a variety of stressors and test session lengths when assessing anxiety-like behavior in experimental models of mTBI.

5.
Cancer Res ; 82(22): 4164-4178, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36084256

RESUMEN

Exercise prevents cancer incidence and recurrence, yet the underlying mechanism behind this relationship remains mostly unknown. Here we report that exercise induces the metabolic reprogramming of internal organs that increases nutrient demand and protects against metastatic colonization by limiting nutrient availability to the tumor, generating an exercise-induced metabolic shield. Proteomic and ex vivo metabolic capacity analyses of murine internal organs revealed that exercise induces catabolic processes, glucose uptake, mitochondrial activity, and GLUT expression. Proteomic analysis of routinely active human subject plasma demonstrated increased carbohydrate utilization following exercise. Epidemiologic data from a 20-year prospective study of a large human cohort of initially cancer-free participants revealed that exercise prior to cancer initiation had a modest impact on cancer incidence in low metastatic stages but significantly reduced the likelihood of highly metastatic cancer. In three models of melanoma in mice, exercise prior to cancer injection significantly protected against metastases in distant organs. The protective effects of exercise were dependent on mTOR activity, and inhibition of the mTOR pathway with rapamycin treatment ex vivo reversed the exercise-induced metabolic shield. Under limited glucose conditions, active stroma consumed significantly more glucose at the expense of the tumor. Collectively, these data suggest a clash between the metabolic plasticity of cancer and exercise-induced metabolic reprogramming of the stroma, raising an opportunity to block metastasis by challenging the metabolic needs of the tumor. SIGNIFICANCE: Exercise protects against cancer progression and metastasis by inducing a high nutrient demand in internal organs, indicating that reducing nutrient availability to tumor cells represents a potential strategy to prevent metastasis. See related commentary by Zerhouni and Piskounova, p. 4124.


Asunto(s)
Ejercicio Físico , Melanoma , Nutrientes , Proteómica , Animales , Humanos , Ratones , Glucosa/metabolismo , Melanoma/genética , Melanoma/metabolismo , Melanoma/patología , Estudios Prospectivos , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Ejercicio Físico/fisiología , Nutrientes/genética , Nutrientes/metabolismo
6.
eNeuro ; 9(4)2022.
Artículo en Inglés | MEDLINE | ID: mdl-35906064

RESUMEN

C57BL/6 is the most commonly used mouse strain in neurobehavioral research, serving as a background for multiple transgenic lines. However, C57BL/6 exhibit behavioral and sensorimotor disadvantages that worsen with age. We bred FVB/NJ females and C57BL/6J males to generate first-generation hybrid offspring (FVB/NJ x C57BL/6J)F1. The hybrid mice exhibit reduced anxiety-like behavior, improved learning, and enhanced long-term spatial memory. In contrast to both progenitors, hybrids maintain sensorimotor performance upon aging and exhibit improved long-term memory. The hybrids are larger than C57BL/6J, exhibiting enhanced running behavior on a linear track during freely-moving electrophysiological recordings. Hybrids exhibit typical rate and phase coding of space by CA1 pyramidal cells. Hybrids generated by crossing FVB/NJ females with transgenic males of a C57BL/6 background support optogenetic neuronal control in neocortex and hippocampus. The hybrid mice provide an improved model for neurobehavioral studies combining complex behavior, electrophysiology, and genetic tools readily available in C57BL/6 mice.


Asunto(s)
Ansiedad , Hipocampo , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Células Piramidales
7.
Nat Metab ; 4(7): 883-900, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35817855

RESUMEN

Sexual dimorphisms are responsible for profound metabolic differences in health and behavior. Whether males and females react differently to environmental cues, such as solar ultraviolet (UV) exposure, is unknown. Here we show that solar exposure induces food-seeking behavior, food intake, and food-seeking behavior and food intake in men, but not in women, through epidemiological evidence of approximately 3,000 individuals throughout the year. In mice, UVB exposure leads to increased food-seeking behavior, food intake and weight gain, with a sexual dimorphism towards males. In both mice and human males, increased appetite is correlated with elevated levels of circulating ghrelin. Specifically, UVB irradiation leads to p53 transcriptional activation of ghrelin in skin adipocytes, while a conditional p53-knockout in mice abolishes UVB-induced ghrelin expression and food-seeking behavior. In females, estrogen interferes with the p53-chromatin interaction on the ghrelin promoter, thus blocking ghrelin and food-seeking behavior in response to UVB exposure. These results identify the skin as a major mediator of energy homeostasis and may lead to therapeutic opportunities for sex-based treatments of endocrine-related diseases.


Asunto(s)
Ghrelina , Proteína p53 Supresora de Tumor , Animales , Apetito , Femenino , Ghrelina/farmacología , Humanos , Masculino , Ratones , Proteína p53 Supresora de Tumor/genética , Rayos Ultravioleta , Aumento de Peso
8.
EMBO Rep ; 22(12): e53824, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34734666

RESUMEN

Academic Core Facilities are optimally situated to improve the quality of preclinical research by implementing quality control measures and offering these to their users.

9.
Front Behav Neurosci ; 15: 735387, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34630052

RESUMEN

The reproducibility crisis (or replication crisis) in biomedical research is a particularly existential and under-addressed issue in the field of behavioral neuroscience, where, in spite of efforts to standardize testing and assay protocols, several known and unknown sources of confounding environmental factors add to variance. Human interference is a major contributor to variability both within and across laboratories, as well as novelty-induced anxiety. Attempts to reduce human interference and to measure more "natural" behaviors in subjects has led to the development of automated home-cage monitoring systems. These systems enable prolonged and longitudinal recordings, and provide large continuous measures of spontaneous behavior that can be analyzed across multiple time scales. In this review, a diverse team of neuroscientists and product developers share their experiences using such an automated monitoring system that combines Noldus PhenoTyper® home-cages and the video-based tracking software, EthoVision® XT, to extract digital biomarkers of motor, emotional, social and cognitive behavior. After presenting our working definition of a "home-cage", we compare home-cage testing with more conventional out-of-cage tests (e.g., the open field) and outline the various advantages of the former, including opportunities for within-subject analyses and assessments of circadian and ultradian activity. Next, we address technical issues pertaining to the acquisition of behavioral data, such as the fine-tuning of the tracking software and the potential for integration with biotelemetry and optogenetics. Finally, we provide guidance on which behavioral measures to emphasize, how to filter, segment, and analyze behavior, and how to use analysis scripts. We summarize how the PhenoTyper has applications to study neuropharmacology as well as animal models of neurodegenerative and neuropsychiatric illness. Looking forward, we examine current challenges and the impact of new developments. Examples include the automated recognition of specific behaviors, unambiguous tracking of individuals in a social context, the development of more animal-centered measures of behavior and ways of dealing with large datasets. Together, we advocate that by embracing standardized home-cage monitoring platforms like the PhenoTyper, we are poised to directly assess issues pertaining to reproducibility, and more importantly, measure features of rodent behavior under more ethologically relevant scenarios.

10.
Cell Rep ; 36(8): 109579, 2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34433056

RESUMEN

Ultraviolet (UV) light affects endocrinological and behavioral aspects of sexuality via an unknown mechanism. Here we discover that ultraviolet B (UVB) exposure enhances the levels of sex-steroid hormones and sexual behavior, which are mediated by the skin. In female mice, UVB exposure increases hypothalamus-pituitary-gonadal axis hormone levels, resulting in larger ovaries; extends estrus days; and increases anti-Mullerian hormone (AMH) expression. UVB exposure also enhances the sexual responsiveness and attractiveness of females and male-female interactions. Conditional knockout of p53 specifically in skin keratinocytes abolishes the effects of UVB. Thus, UVB triggers a skin-brain-gonadal axis through skin p53 activation. In humans, solar exposure enhances romantic passion in both genders and aggressiveness in men, as seen in analysis of individual questionaries, and positively correlates with testosterone level. Our findings suggest opportunities for treatment of sex-steroid-related dysfunctions.


Asunto(s)
Hormona Antimülleriana/biosíntesis , Sistema Hipotálamo-Hipofisario/metabolismo , Ovario/metabolismo , Conducta Sexual/efectos de la radiación , Piel/metabolismo , Testosterona/biosíntesis , Rayos Ultravioleta , Animales , Estro/metabolismo , Femenino , Técnicas de Inactivación de Genes , Queratinocitos/metabolismo , Masculino , Ratones
11.
Elife ; 102021 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-34028353

RESUMEN

While high risk of failure is an inherent part of developing innovative therapies, it can be reduced by adherence to evidence-based rigorous research practices. Supported through the European Union's Innovative Medicines Initiative, the EQIPD consortium has developed a novel preclinical research quality system that can be applied in both public and private sectors and is free for anyone to use. The EQIPD Quality System was designed to be suited to boost innovation by ensuring the generation of robust and reliable preclinical data while being lean, effective and not becoming a burden that could negatively impact the freedom to explore scientific questions. EQIPD defines research quality as the extent to which research data are fit for their intended use. Fitness, in this context, is defined by the stakeholders, who are the scientists directly involved in the research, but also their funders, sponsors, publishers, research tool manufacturers, and collaboration partners such as peers in a multi-site research project. The essence of the EQIPD Quality System is the set of 18 core requirements that can be addressed flexibly, according to user-specific needs and following a user-defined trajectory. The EQIPD Quality System proposes guidance on expectations for quality-related measures, defines criteria for adequate processes (i.e. performance standards) and provides examples of how such measures can be developed and implemented. However, it does not prescribe any pre-determined solutions. EQIPD has also developed tools (for optional use) to support users in implementing the system and assessment services for those research units that successfully implement the quality system and seek formal accreditation. Building upon the feedback from users and continuous improvement, a sustainable EQIPD Quality System will ultimately serve the entire community of scientists conducting non-regulated preclinical research, by helping them generate reliable data that are fit for their intended use.


Asunto(s)
Investigación Biomédica/normas , Evaluación Preclínica de Medicamentos/normas , Proyectos de Investigación/normas , Conducta Cooperativa , Exactitud de los Datos , Difusión de Innovaciones , Europa (Continente) , Humanos , Comunicación Interdisciplinaria , Control de Calidad , Mejoramiento de la Calidad , Participación de los Interesados
12.
Cells ; 9(10)2020 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-33086621

RESUMEN

Activity-dependent neuroprotective protein (ADNP) mutations are linked with cognitive dysfunctions characterizing the autistic-like ADNP syndrome patients, who also suffer from delayed motor maturation. We thus hypothesized that ADNP is deregulated in versatile myopathies and that local ADNP muscle deficiency results in myopathy, treatable by the ADNP fragment NAP. Here, single-cell transcriptomics identified ADNP as a major constituent of the developing human muscle. ADNP transcript concentrations further predicted multiple human muscle diseases, with concentrations negatively correlated with the ADNP target interacting protein, microtubule end protein 1 (EB1). Reverting back to modeling at the single-cell level of the male mouse transcriptome, Adnp mRNA concentrations age-dependently correlated with motor disease as well as with sexual maturation gene transcripts, while Adnp expressing limb muscle cells significantly decreased with aging. Mouse Adnp heterozygous deficiency exhibited muscle microtubule reduction and myosin light chain (Myl2) deregulation coupled with motor dysfunction. CRISPR knockdown of adult gastrocnemius muscle Adnp in a Cas9 mouse resulted in treadmill (male) and gait (female) dysfunctions that were specifically ameliorated by treatment with the ADNP snippet, microtubule interacting, Myl2-regulating, NAP (CP201). Taken together, our studies provide new hope for personalized diagnosis/therapeutics in versatile myopathies.


Asunto(s)
Técnicas de Silenciamiento del Gen , Proteínas de Homeodominio/metabolismo , Músculos/patología , Enfermedades Musculares/metabolismo , Enfermedades Musculares/patología , Proteínas del Tejido Nervioso/metabolismo , Análisis de la Célula Individual , Síndrome Debilitante/patología , Adulto , Animales , Secuencia de Bases , Conducta Animal , Niño , Femenino , Marcha , Regulación de la Expresión Génica , Proteínas de Homeodominio/genética , Humanos , Masculino , Ratones , Ratones Noqueados , Actividad Motora , Músculos/metabolismo , Células 3T3 NIH , Naftoquinonas , Proteínas del Tejido Nervioso/genética , Unión Neuromuscular/metabolismo , Unión Neuromuscular/patología , Condicionamiento Físico Animal , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Células Madre/metabolismo , Síndrome Debilitante/metabolismo
13.
Transl Psychiatry ; 10(1): 341, 2020 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-33024083

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

14.
Transl Psychiatry ; 10(1): 327, 2020 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-32963225

RESUMEN

In the original Article, Dr. Angela Ruban's name was misspelled as "Aangela Ruban". This has been corrected in the PDF, HTML, and XML versions of this Article.

15.
Transl Psychiatry ; 10(1): 305, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32873780

RESUMEN

Schizophrenia is a debilitating psychiatric disorder with a significant number of patients not adequately responding to treatment. Phencyclidine (PCP) is used as a validated model for schizophrenia, shown to reliably induce positive, negative and cognitive-like behaviors in rodents. It was previously shown in our lab that behavioral phenotypes of PCP-treated mice can be alleviated after intracranial transplantation of mesenchymal stem cells (MSC). Here, we assessed the feasibility of intranasal delivery of MSCs-derived-extracellular vesicles (EVs) to alleviate schizophrenia-like behaviors in a PCP model of schizophrenia. As MSCs-derived EVs were already shown to concentrate at the site of lesion in the brain, we determined that in PCP induced injury the EVs migrate to the prefrontal cortex (PFC) of treated mice, a most involved area of the brain in schizophrenia. We show that intranasal delivery of MSC-EVs improve social interaction and disruption in prepulse inhibition (PPI) seen in PCP-treated mice. In addition, immunohistochemical studies demonstrate that the EVs preserve the number of parvalbumin-positive GABAergic interneurons in the PFC of treated mice. Finally, MSCs-EVs reduced glutamate levels in the CSF of PCP-treated mice, which might explain the reduction of toxicity. In conclusion, we show that MSCs-EVs improve the core schizophrenia-like behavior and biochemical markers of schizophrenia and might be used as a novel treatment for this incurable disorder.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Esquizofrenia , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Fenciclidina , Corteza Prefrontal , Esquizofrenia/terapia
16.
J Neurosci Methods ; 334: 108597, 2020 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-31987912

RESUMEN

Scientific investigations, in general, and research in neuroscience, in particular, are becoming ever more complex and require the integration of different techniques. Behavioral assays, which are among the most frequently used methodologies in neuroscience, nowadays rely on advanced, sophisticated technologies that require proficient application. Therefore, behavioral core facilities are becoming essential support units, as they provide the specialized expert research services needed to conduct advanced neuroscience. We here review the lessons learned and insights gathered from managing behavioral core facilities in different academic research institutes. This review addresses several issues, including: the advantages of behavioral core facilities, considerations for establishing a behavioral core facility, and the methodological advances made through calibration and standardization of assay protocols and the development of new assays. Collectively, the review highlights the benefits of both working within and collaborating with behavioral core facility units and emphasizes the potential progress in neuro-phenotyping that such facilities provide.

17.
J Neurotrauma ; 34(17): 2518-2528, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28514188

RESUMEN

The present study was designed to tackle two notorious features of mild traumatic brain injury (mTBI)-heterogeneity and invisibility-by characterizing the full scope of mTBI symptoms. Mice were exposed to brain injuries of different intensities utilizing a weight-drop model (10, 30, 50, and 70 g) and subsequently subjected to a comprehensive battery of behavioral tests at different time points and immunohistochemical examination of cortical slices. Whereas the physiological, neurological, emotional, and motor function of mTBI mice (i.e., their well-being) remained largely intact, cognitive deficits were identified by the y-maze and novel object recognition. Results from these two cognitive tests were combined and a dose-response relationship was established between injury intensity and cognitive impairment, ranging from an 85% decline after a 70-g impact (p < 0.001) to a 20% decline after a 10-g impact (essentially no effect). In addition, higher intensities of injury were accompanied by decreased expression of axonal and synaptic markers. Thus, our mTBI mice showed a clear discrepancy between performance (poor cognitive function) and appearance (healthy demeanor). This is of major concern given that diagnosis of mTBI is established on the presence of clinical symptoms and emphasizes the need for an alternative diagnostic modality.


Asunto(s)
Conducta Animal/fisiología , Conmoción Encefálica/fisiopatología , Disfunción Cognitiva/fisiopatología , Aprendizaje por Laberinto/fisiología , Reconocimiento en Psicología/fisiología , Animales , Conmoción Encefálica/complicaciones , Disfunción Cognitiva/etiología , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos ICR
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...